/Жегова М.Н
/ MCI OBa IVI.II

РАСЧЕТ СТРАХОВЫХ ТАРИФОВ ПО НАКОПИТЕЛЬНОМУ СТРАХОВАНИЮ ДЕТЕЙ (С УЧАСТИЕМ В ПРИБЫЛИ)

Расчет страховых тарифов производится к «Правилам накопительного страхования детей (с участием в прибыли)» в редакции от 11 августа 2014 г. (далее – Правила) и направлен на гарантированное обеспечение выполнения принятых страховщиком страховых обязательств и его финансовой устойчивости.

В соответствии с Правилами, страховыми случаями являются:

- Дожитие Застрахованного лица до оговоренного в договоре страхования возраста или срока (п. 5.1.1. Правил) (далее «Дожитие»);
- Смерть Застрахованного лица в течение действия договора страхования по любой причине (п. 5.1.2. Правил) (далее «Смерть»);
- Установление инвалидности Застрахованному лицу в течение действия договора страхования (п. 5.1.3. Правил) (далее «Инвалидность»).

Дополнительными условиями страхования к Правилам предусматриваются следущие опции:

- Страхование на случай освобождения от уплаты взносов (Приложение 0.1 к Правилам) (далее «ОУВ»)
- Конверсия полиса (Приложение 0.2 к Правилам)

Основные термины и обозначения

 SA^{e} – величина страховой суммы по риску «Дожитие»;

 SA^r – величина годовой страховой ренты;

 NP^e – величина годовой страховой нетто-премии по риску «Дожитие»;

 NP^d — величина годовой страховой нетто-премии по риску «Смерть»;

 NP^{w} – величина годовой страховой нетто-премии по риску «ОУВ»;

 GP^e – величина годовой страховой брутто-премии по риску «Дожитие»;

 GP^{d} – величина годовой страховой брутто-премии по риску «Смерть»;

 GP^{w} – величина годовой страховой брутто-премии по риску «ОУВ»;

SV – величина выкупной суммы;

f – нагрузка, в процентах от страховой брутто-премии;

i – гарантируемая годовая норма доходности;

v – дисконтирующий множитель:

$$v = \frac{1}{1+i};$$

n – срок страхования, лет;

 n_w – срок действия покрытия по риску «ОУВ», лет;

k – срок уплаты страховых взносов, лет;

 k_r – срок уплаты страховой ренты, лет;

m – частота уплаты страховых взносов (1 - ежегодно, 2 – раз в полгода, 4 - ежеквартально, 12 - ежемесячно);

 m_r – частота выплаты страховой ренты (1 - ежегодно, 2 – раз в полгода, 4 - ежеквартально, 12 - ежемесячно);

 q_z – вероятность того, что индивидуум в возрасте z лет умрет по любой причине до достижения им возраста z+1 лет;

 p_z — вероятность того, что индивидуум в возрасте z лет доживет до достижения им возраста z+1 лет:

$$p_z = 1 - q_z;$$

 $_{S}p_{Z}$ – вероятность того, что индивидуум в возрасте z лет доживет до достижения им возраста z+s лет:

$$_{S}p_{z}=\prod_{j=0}^{s-1}p_{z+j};$$

 q_z^i – вероятность того, что индивидуум в возрасте z лет будет признан инвалидом I или II группы по любой причине до достижения им возраста z+1 лет;

Для оценки вероятностей смерти, инвалидности и дожития между возрастами z лет и z+1 лет будем исходить из предположения о постоянной интенсивности смерти и инвалидности внутри года:

$$\begin{split} _tp_z &= (p_z)^t, t \in [0,1]. \\ _tp_z^i &= (p_z^i)^t, t \in [0,1]. \end{split}$$

В таком случае $_tq_z=1-(1-q_z)^t,\ _tq_z^i=1-(1-q_z^i)^t$

 $(aq)_z$ – вероятность того, что индивидуум в возрасте z лет умрет по любой причине или будет признан инвалидом I или II группы по любой причине до достижения им возраста z+1 лет;

$$(aq)_z = 1 - (1 - q_z)(1 - q_z^i) = q_z + q_z^i - q_zq_z^i$$

 $(aq)_z^d$ – вероятность того, что индивидуум в возрасте z лет умрет по любой причине до достижения им возраста z+1 лет и ранее признания его инвалидом I или II группы по любой причине;

возраста
$$z+1$$
 лет и ранее признания его инвалидом I или II группы по любой причине;
$$(aq)_z^d = \frac{\ln(1-q_z)}{\ln(1-q_z) + \ln(1-q_z^i)} (1-(1-q_z)(1-q_z^i))$$

 $(aq)_z^i$ – вероятность того, что индивидуум в возрасте z лет будет признан инвалидом I или II группы по любой причине до достижения им возраста z+1 лет и ранее смерти по любой причине;

$$(aq)_z^i = \frac{\ln(1 - q_z^i)}{\ln(1 - q_z) + \ln(1 - q_z^i)} (1 - (1 - q_z)(1 - q_z^i))$$

 $_{s}(ap)_{z}$ – вероятность того, что индивидуум в возрасте x лет доживет до достижения им возраста x+s лет и не будет признан инвалидом I или II группы;

$$_{s}(ap)_{z} = \prod_{j=0}^{s-1} (1 - (aq)_{z+j});$$

Используемые при расчете страховых тарифов таблица смертности, таблица инвалидизации и гарантируемые годовые нормы доходности приведены в Приложениях 1-3 соответственно.

Расчет страхового тарифа по рискам «Дожитие» и «Смерть»

Расчет страховых тарифов по рискам «Дожитие», «Смерть» производится исходя из условия эквивалентности (равенства актуарных стоимостей) ожидаемого потока страховых выплат и ожидаемого потока страховых премий.

В соответствии с Правилами:

- Страховая сумма по риску «Дожитие» устанавливается в договоре страхования;
- Страховая сумма по риску «Смерть» равна 110% суммы страховых взносов по рискам «Дожитие» и «Смерть», подлежащих уплате к моменту смерти Застрахованного.

При расчете используются следующие обозначения:

x — возраст Застрахованного на момент заключения договора страхования, округленный в меньшую сторону до полного числа лет;

Актуарная стоимость единичной годовой страховой премии, уплачиваемой в течение k лет m раз в год равными частями по 1/m равна:

$$\ddot{a}_{x:\overline{k}|}^{(m)} = \sum_{s=0}^{km-1} \frac{1}{m} v^{\frac{s}{m}} \cdot \frac{s}{m} p_x$$

 $_{n}E_{x}$ — актуарная стоимость на момент заключения договора страхования единичной страховой суммы, выплачиваемой при дожитии Застрахованного, имевшего на момент заключения договора страхования возраст x лет, до достижения возраста x+n в момент достижения им возраста x+n лет:

$$_{n}E_{x}=v^{n}\cdot _{n}p_{x}$$

Уравнение эквивалентности по риску «Дожитие» имеет вид:

$$GP^e \cdot \ddot{a}_{x:\overline{k}|}^{(m)} = {}_nE_x \cdot SA^e + f \cdot GP^e \cdot \ddot{a}_{x:\overline{k}|}^{(m)}$$

Откуда находится выражение для годовой нетто-премии по риску «Дожитие», уплачиваемой в течение k лет m раз в год равными частями:

$$NP^e = \frac{{}_{n}E_x}{\ddot{a}_{x:\overline{k}|}^{(m)}} \cdot SA^e$$

Актуарная стоимость на момент заключения договора страхования покрытия на случай смерти Застрахованного, имевшего на момент заключения договора страхования возраст x лет, до достижения им возраста x+1 лет, страховая сумма по которому возрастает от 1/m m раз в год равными частями по 1/m в течение k лет, выплачиваемая в момент смерти Застрахованного, равна:

$$\left(I_{\overline{k|}}\overline{A}\right)_{x:\overline{n|}}^{(m)} = \left(\sum_{s=0}^{km-1} \frac{s+1}{m} v^{\frac{s+1}{m}} \cdot \frac{s}{m} p_x \cdot \frac{1}{m} q_{x+\frac{s}{m}} + k \cdot \sum_{s=km}^{nm-1} v^{\frac{s+1}{m}} \cdot \frac{s}{m} p_x \cdot \frac{1}{m} q_{x+\frac{s}{m}}\right) \frac{m\left((1+i)^{\frac{1}{m}}-1\right)}{ln(1+i)}$$

Уравнение эквивалентности для совокупного покрытия по рискам «Дожитие» и «Смерть» имеет вид:

$$(GP^{e} + GP^{d}) \cdot \ddot{a}_{x:\overline{k}|}^{(m)} = 1.1 \cdot \left(I_{\overline{k}|}\overline{A}\right)_{x:\overline{n}|}^{(m)} \cdot (GP^{e} + GP^{d}) + {}_{n}E_{x} \cdot SA^{e} + f \cdot (GP^{e} + GP^{d}) \cdot \ddot{a}_{x:\overline{k}|}^{(m)}$$

Из указанного уравнения годовая нетто-премия по риску «Смерть» выражается следующим образом:

$$NP^{d} = \frac{{}_{n}E_{x} \cdot SA^{e} \cdot (1-f)}{\ddot{a}_{x:\overline{k}|}^{(m)}(1-f) - 1.1 \cdot \left(I_{\overline{k}|}\overline{A}\right)_{x:\overline{n}|}^{(m)}} - \frac{{}_{n}E_{x}}{\ddot{a}_{x:\overline{k}|}^{(m)}} \cdot SA^{e}$$

Расчет величины страховой ренты

В соответствии с п.5.3 Правил, Страхователь может согласовать выплату страховой суммы по риску «Дожитие» в виде периодических рентных платежей пренумерандо.

Актуарная стоимость в момент выплаты страховой суммы по дожитию единичной годовой страховой ренты, уплачиваемой в течение k_r лет m_r раз в год равными частями по $1/m_r$ равна:

$$\ddot{a}_{x+n:\overline{k_r}|}^{(m_r)} = \sum_{r=0}^{k_r m_r - 1} \frac{1}{m_r} v^{\frac{s}{m_r}} \cdot \frac{s}{\frac{s}{m_r}} p_{x+n}$$

Эквивалентность выплаты страховой суммы по дожитию и выплаты периодических рентных платежей пренумерандо обеспечивается следующим условием:

$$SA^e = \ddot{a}_{x+n:\overline{k_r}|}^{(m_r)} SA^r$$

Таким образом, величина годовой страховой ренты равна:

$$SA^r = \frac{SA^e}{\ddot{a}_{x+n:\overline{k_r}|}^{(m_r)}}$$

При наличии на момент выплаты страховой суммы по дожитию накопленного дополнительного инвестиционного дохода размере B>0, Страхователь может согласовать использование этого дополнительного инвестиционного дохода для увеличения величины рентных платежей. В таком случае, величина годовой страховой ренты равна:

$$SA^r = \frac{SA^e + B}{\ddot{a}_{x+n:\overline{k_r}|}^{(m_r)}}$$

Расчет страхового тарифа по риску «ОУВ»

В соответствии с п.5 Приложения 0.1 к Правилам, страхование риска «ОУВ» может осуществляться по следующим вариантам:

- Освобождение от уплаты страховых взносов в случае смерти Страхователя (п. 5.1 Приложения 0.1 к Правилам) (далее «ОУВ смерть»);
- Освобождение от уплаты страховых взносов в случае установления Страхователю инвалидности I или II группы по любой причине (п. 5.2 Приложения 0.1 к Правилам) (далее «ОУВ инвалидность»);
- Освобождение от уплаты страховых взносов в случае смерти Страхователя или установления ему инвалидности I или II группы (п. 5.3 Приложения 0.1 к Правилам) (далее «ОУВ смерть и инвалидность»).

При наступлении страхового случая по риску «ОУВ» уплата страховых взносов по рискам «Дожитие» и «Смерть» за период, начинающийся с даты страхового случая по риску «ОУВ», прекращается и в дальнейшем не требуется.

При расчете используются следующие обозначения:

x – возраст Застрахованного на момент заключения договора страхования, округленный в меньшую сторону до полного числа лет;

y – возраст Страхователя на момент заключения договора страхования, округленный в большую сторону до полного числа лет;

При наступлении страхового случая по риску «ОУВ» страховой выплатой является поток брутто-премий по договору страхования по рискам «Дожитие» и «Смерть», начинающийся с момента страхового случая по риску «ОУВ».

Актуарная стоимость единичной годовой страховой премии, уплачиваемой в течение k лет m раз в год равными частями по 1/m при условии, что плательщик жив и не признан инвалидом I или II группы, равна:

$$\ddot{b}_{x:\overline{k}|}^{(m)} = \sum_{s=0}^{km-1} \frac{1}{m} v^{\frac{s}{m}} \cdot \frac{s}{m} (ap)_x$$

Актуарная стоимость потока выплат единичной брутто-премии при реализации страхового случая по риску «ОУВ» в момент t (в долях года) составляет:

$$\ddot{a}_{x+\frac{[tm]}{m}:\overline{k-\frac{[tm]}{m}}}^{(m)} = \sum_{s=0}^{km-[tm]-1} \frac{1}{m} v^{\frac{s}{m}} \cdot \frac{s}{m} p_{x+\frac{[tm]}{m}}$$

В целях расчета страхового тарифа по риску «ОУВ» вероятность дожития Застрахованного до любого периода принимается равной единице.

Расчет для покрытия «ОУВ смерть»

Актуарная стоимость потока выплат единичной брутто-премии при реализации страхового случая по риску «ОУВ смерть» равна:

$$\tilde{A}_{y:\overline{n_w|}} = \sum_{s=0}^{n_w m - 1} v^{\frac{s+1}{m}} \cdot \frac{1}{m} p_x \cdot \frac{s}{m} p_y \cdot \frac{1}{m} q_{y+\frac{s}{m}} \cdot \ddot{a}_{x+\frac{s+1}{m}:k-\frac{s+1}{m}}^{(m)}$$

Уравнение эквивалентности для риска «ОУВ смерть» имеет вид:

$$GP^w \cdot \ddot{a}_{y:\overline{k}|}^{(m)} = (GP^e + GP^d) \cdot \tilde{A}_{y:\overline{n_w}|} + f \cdot GP^w \cdot \ddot{a}_{y:\overline{k}|}^{(m)}$$

Нетто-премия по риску «ОУВ смерть» уплачиваемая в течение k лет m раз в год равными частями:

$$NP^{w} = (GP^{e} + GP^{d}) \cdot \frac{\tilde{A}_{y:\overline{n_{w}|}}}{\ddot{a}_{y:\overline{k|}}^{(m)}}$$

Расчет для покрытия «ОУВ инвалидность»

Актуарная стоимость потока выплат единичной брутто-премии при реализации страхового случая по риску «ОУВ инвалидность» равна:

$$\tilde{A}_{y:\overline{n_w}|} = \sum_{s=0}^{n_w m - 1} v^{\frac{s+1}{m}} \cdot \frac{1}{s+1} p_x \cdot \frac{s}{m} (ap)_y \cdot \frac{1}{m} (aq)_{y+\frac{s}{m}}^i \cdot \ddot{a}_{x+\frac{s+1}{m}:k-\frac{s+1}{m}}^{(m)}$$

Уравнение эквивалентности для риска «ОУВ инвалидность» имеет вид:

$$GP^w \cdot \ddot{b}_{y:\overline{k}|}^{(m)} = (GP^e + GP^d) \cdot \tilde{A}_{y:\overline{n_w}|} + f \cdot GP^w \cdot \ddot{b}_{y:\overline{k}|}^{(m)}$$

Нетто-премия по риску «ОУВ инвалидность» уплачиваемая в течение k лет m раз в год равными частями:

$$NP^{w} = (GP^{e} + GP^{d}) \cdot \frac{\tilde{A}_{y:\overline{n_{w}|}}}{\ddot{b}_{y:\overline{k|}}^{(m)}}$$

Расчет для покрытия «ОУВ смерть и инвалидность»

Актуарная стоимость потока выплат единичной брутто-премии при реализации страхового случая по риску «ОУВ смерть и инвалидность» равна:

$$\tilde{A}_{y:\overline{n_w}|} = \sum_{s=0}^{n_w m - 1} v^{\frac{s+1}{m}} \cdot \frac{1}{s+1} p_x \cdot \frac{s}{m} (ap)_y \cdot \frac{1}{m} (aq)_{y+\frac{s}{m}} \cdot \ddot{a}_{x+\frac{s+1}{m}:\overline{k-\frac{s+1}{m}}}^{(m)}$$

Уравнение эквивалентности для риска «ОУВ смерть и инвалидность» имеет вид:

$$GP^w \cdot \ddot{b}_{y:\overline{k}|}^{(m)} = (GP^e + GP^d) \cdot \tilde{A}_{y:\overline{n_w}|} + f \cdot GP^w \cdot \ddot{b}_{y:\overline{k}|}^{(m)}$$

Нетто-премия по риску «ОУВ смерть и инвалидность» уплачиваемая в течение k лет m раз в год равными частями:

$$NP^{w} = (GP^{e} + GP^{d}) \cdot \frac{\tilde{A}_{y:\overline{n_{w}|}}}{\ddot{b}_{y:\overline{k}|}^{(m)}}$$

Расчет выкупных сумм на случай расторжения в течение основного срока действия договора страхования

Пусть задан момент времени t в долях года (начало действия страхования принимаем за момент t=0). Тогда момент ближайшей оплаты страховой премии, предшествующий t равен $\frac{|tm|}{m}$. Величина страхового

брутто-резерва для совокупного покрытия по рискам «Дожитие» и «Смерть» на момент времени $\frac{\lfloor tm \rfloor}{m}$ сразу после уплаты страхового взноса в момент $\frac{\lfloor tm \rfloor}{m}$ составляет:

$$\begin{split} &\underbrace{_{\lfloor tm \rfloor}}V = 1.1 \cdot \left(\left(I_{\frac{\lfloor tm \rfloor}{m}} \overline{A}\right)_{x + \frac{\lfloor tm \rfloor}{m} : n - \frac{\lfloor tm \rfloor}{m}}^{(m)} + \frac{\lfloor tm \rfloor}{m} \cdot \overline{A}_{x + \frac{\lfloor tm \rfloor}{m} : n - \frac{\lfloor tm \rfloor}{m}}^{1} \right) \cdot (GP^{e} + GP^{d}) + \\ &+ \prod_{n - \underline{\lfloor tm \rfloor}} E_{x + \frac{\lfloor tm \rfloor}{m}} \cdot SA^{e} - (1 - f) \cdot (GP^{e} + GP^{d}) \cdot \ddot{a}_{x + \frac{\lfloor tm \rfloor}{m} : k - \frac{\lfloor tm \rfloor}{m}}^{(m)} + \frac{(GP^{e} + GP^{d})}{m} \end{split}$$

При расторжении в момент $\frac{|tm|}{m}$ фиксируется страховая сумма SV, которая рассчитывается исходя из условия эквивалентности:

$$(1+\beta)\cdot SV + f\cdot (GP^e + GP^d)\cdot \ddot{a}^{(m)}_{x+\frac{\lfloor tm\rfloor}{m}: \overline{k-\frac{\lfloor tm\rfloor}{m}}} = \underline{\lim}_{\underline{t}} V$$

Таким образом:

$$SV = \max \left(\frac{\frac{\lfloor tm \rfloor}{m} V - f \cdot (GP^e + GP^d) \cdot \ddot{a}^{(m)}_{x + \frac{\lfloor tm \rfloor}{m} \cdot \overline{k} - \frac{\lfloor tm \rfloor}{m}}}{(1 + \beta)}, 0 \right)$$

Коэффициент $\frac{1}{(1+\beta)}$ отражает расходы страховой компании на оформление и оплату выкупной суммы и составляет 0,95.

Указанная выкупная сумма SV применяется при расторжении полиса в любой момент времени t, лежащий в промежутке $\left[\frac{\lfloor tm \rfloor}{m}; \frac{\lfloor tm \rfloor + 1}{m}\right)$.

Расчет выкупных сумм на случай расторжения в течение срока выплаты страховой ренты

Пусть задан момент времени t в долях года (начало срока выплаты сраховой ренты принимаем за момент t=0). Тогда момент ближайшей выплаты страховой ренты, предшествующий t равен $\frac{\lfloor tm_r \rfloor}{m_r}$. Величина страхового брутто-резерва на момент времени $\frac{\lfloor tm_r \rfloor}{m_r}$ сразу после уплаты страховой ренты в момент $\frac{\lfloor tm_r \rfloor}{m_r}$ составляет:

$$\underbrace{|tm_r|}_{m_r} V = SA^r \cdot \ddot{a}_{x+n+\frac{|tm_r|}{m_r}:k_r-\frac{|tm_r|}{m_r}}^{(m_r)} - \frac{SA^r}{m_r}$$

При расторжении в момент $\frac{\lfloor t m_r \rfloor}{m_r}$ фиксируется страховая сумма SV, которая рассчитывается исходя из условия эквивалентности:

$$(1+\gamma)\cdot SV = \underbrace{\lfloor tm_r \rfloor}_{m_r} V$$

Таким образом:

$$SV = \frac{\frac{\lfloor tm_r \rfloor}{m_r}V}{(1+v)}$$

Коэффициент $\frac{1}{(1+\gamma)}$ отражает расходы страховой компании на оформление и оплату выкупной суммы и составляет 1.

Указанная выкупная сумма SV применяется при расторжении полиса в любой момент времени t, лежащий в промежутке $\left[\frac{[tm_r]}{m_r}; \frac{[tm_r]+1}{m_r}\right)$.

Конверсия полиса

Конверсия полиса предусматривает прекращение оплаты страховой премии. При этом страховая сумма по риску «Смерть» устанавливается в размере 110% от суммы уплаченных к моменту конверсии страховых взносов по рискам «Дожитие» и «Смерть».

Пусть задан момент времени t в долях года (начало действия страхования принимаем за момент t=0). Тогда момент ближайшей оплаты страховой премии, предшествующий t равен $\frac{|tm|}{m}$. Величина страхового брутто-резерва для совокупного покрытия по рискам «Дожитие» и «Смерть» на момент времени $\frac{|tm|}{m}$ до уплаты страхового взноса в момент $\frac{|tm|}{m}$ составляет:

$$\begin{split} &\underset{\overline{m}}{\underline{|tm|}}V = 1.1 \cdot \left(\left(I_{\overline{k-\underline{|tm|}}} \overline{A} \right)_{x+\underline{|tm|}}^{(m)} \overline{A}_{x+\underline{|tm|}} + \frac{|tm|}{m} \cdot \overline{A}_{x+\underline{|tm|}}^{1} \overline{A}_{x+\underline{|tm|}} \right) \cdot (GP^{e} + GP^{d}) + \\ &+ \frac{|tm|}{n} E_{x+\underline{|tm|}} \times SA^{e} - (1-f) \cdot (GP^{e} + GP^{d}) \cdot \ddot{a}_{x+\underline{|tm|}}^{(m)} \cdot \underline{A}_{x+\underline{|tm|}}^{(m)} \cdot \underline{A}_{x+\underline{|tm|}}^{(m)} \\ &+ \frac{|tm|}{n} E_{x+\underline{|tm|}} \times SA^{e} - (1-f) \cdot (GP^{e} + GP^{d}) \cdot \ddot{a}_{x+\underline{|tm|}}^{(m)} \cdot \underline{A}_{x+\underline{|tm|}}^{(m)} \cdot \underline{A}_{x+\underline{$$

При конверсии в момент $\frac{\lfloor tm \rfloor}{m}$ фиксируется страховая сумма \widetilde{SA}^d по риску «Смерть» в размере

$$\widetilde{SA}^d = \frac{\lfloor tm \rfloor}{m} (GP^e + GP^d)$$

Новая страховая сумма по риску «Дожитие» \widetilde{SA}^e рассчитывается из условия эквивалентности страховых покрытий до и после конверсии:

$$\widetilde{SA}^e \cdot {}_{n-\underbrace{\lfloor tm \rfloor}{m}} E_{x+\underbrace{\lfloor tm \rfloor}{m}} + \widetilde{SA}^d \cdot \overline{A}^1 {}_{x+\underbrace{\lfloor tm \rfloor}{m} \cdot n-\underbrace{\lfloor tm \rfloor}{m}} + f \cdot (GP^e + GP^d) \cdot \ddot{a}^{(m)} {}_{x+\underbrace{\lfloor tm \rfloor}{m} \cdot k-\underbrace{\lfloor tm \rfloor}{m}} = {}_{\underbrace{\lfloor tm \rfloor}{m}} V$$

Таким образом:

$$\widetilde{SA}^{e} = \max \left(\frac{\frac{|\underline{tm}|}{m} V - \widetilde{SA}^{d} \cdot \overline{A}^{1}_{x + \frac{|\underline{tm}|}{m} : n - \frac{|\underline{tm}|}{m}} - f \cdot (GP^{e} + GP^{d}) \cdot \ddot{a}^{(m)}_{x + \frac{|\underline{tm}|}{m} : k - \frac{|\underline{tm}|}{m}}}{n - \frac{|\underline{tm}|}{m} E_{x + \frac{|\underline{tm}|}{m}}}, 0 \right)$$

Указанные страховые суммы \widetilde{SA}^d и \widetilde{SA}^e применяются при конверсии полиса в любой момент времени t, лежащий в промежутке $\left[\frac{\lfloor tm \rfloor}{m}; \frac{\lfloor tm \rfloor + 1}{m}\right]$.

Для полиса, находящего в конверсии, выкупная сумма, выплачиваемая по расторжению, произведенному в

Для полиса, находящего в конверсии, выкупная сумма, выплачиваемая по расторжению, произведенному в периоде $\left[\frac{\lfloor tm \rfloor + s}{m}; \frac{\lfloor tm \rfloor + s + 1}{m}\right)$ (где $s = 0, ... km - \lfloor tm \rfloor - 1$), устанавливается из условия эквивалентности:

$$(1+\beta) \cdot SV = \underbrace{_{\lfloor tm \rfloor + s}}_{m} V$$

$$\underbrace{_{\lfloor tm \rfloor + s}}_{n} V = \widetilde{SA}^{e} \cdot \underbrace{_{n - \lfloor tm \rfloor + s}}_{m} E_{x + \underbrace{\lfloor tm \rfloor + s}_{m}} + \widetilde{SA}^{d} \cdot \overline{A}^{1}_{x + \underbrace{\lfloor tm \rfloor + s}_{m} : n - \underbrace{\lfloor tm \rfloor + s}_{m}}]$$

Таким образом:

$$SV = \max\left(\frac{\frac{\lfloor tm \rfloor + s}{M}V}{(1+\beta)}, 0\right)$$

Коэффициент $\frac{1}{(1+\beta)}$ отражает расходы страховой компании на оформление и оплату выкупной суммы и составляет 0,95.

Расчет страхового тарифа по риску «Инвалидность»

Расчет осуществляется в соответствии с Методикой (I) расчета тарифных ставок по массовым рисковым видам страхования, утвержденной Распоряжением Росстрахнадзора от 8 июля 1993 г. N 02-03-36.

Для использования Методики (I) необходимы значения вероятностей возникновения страхового случая и средних значений возмещения по одному договору страхования при наступлении страхового случая.

При расчете используются следующие обозначения:

q – годовая вероятность наступления страхового случая;

S – средняя страховая сумма по одному договору страхования;

 S_h – среднее возмещение по одному договору страхования при наступлении страхового случая;

L – число договоров, которое предполагается заключить в текущем году по данному виду страхования;

 T_o – основная часть нетто-ставки;

 T_{p} — рисковая надбавка;

 T_n – нетто-ставка;

 T_b – брутто-ставка;

f – нагрузка, в процентах от брутто-ставки.

Нетто-ставка T_n состоит из двух частей: основной части T_0 и рисковой надбавки T_p :

$$T_n = T_o + T_p$$

Основная часть нетто-ставки соответствует средним выплатам страховщика и рассчитывается по формуле (на 100 рублей страховой суммы (или, то же самое, основная часть нетто-ставки в процентах)):

$$T_o = \frac{S_b}{S} q$$

Рисковая надбавка вводится, чтобы учесть вероятные отклонения случайных величин от их средних значений и обеспечить с заданной вероятностью γ неотрицательность результата от операций по страхованию. Вероятность γ , именуемая гарантией надежности, принимается в целях настоящего расчета равной 0,9. Расчет рисковой надбавки осуществляется по формуле:

$$T_p = 1.2T_o \alpha(\gamma) \sqrt{\frac{1-q}{L \cdot q}}$$

где $\alpha(\gamma)$ – квантиль стандартного закона нормального распределения, отвечающий гарантии надежности γ . Из Таблицы 1 находим $\alpha(0,9)=1,3$.

Таблица 1. Квантили нормального распределения

	- 170	,	P P		
γ	0,84	0,9	0,95	0,98	0,9986
$\alpha(\gamma)$	1	1,3	1,645	2	3

В соответствии с п. 5.2 Правил, установление инвалидности Застрахованному лицу признается страховым случаем, если оно явилось следствием:

- Травмы (травматического повреждения), полученной в результате несчастного случая;
- Отравления ядовитыми веществами, недоброкачественными пищевыми продуктами (за исключением ботулизма, сальмонеллеза и иных разновидностей пищевой токсикоинфекции), промышленными или бытовыми химическими веществами, лекарственными препаратами;
- Заболевания клещевым энцефалитом или полиомиелитом.

Вероятность страхового случая оценивалась на основании статистической информации Федеральной службы государственной статистики о числе лиц, впервые признанных инвалидами, и причинах инвалидности. Полученное значение вероятности $q=0{,}0004$.

Застрахованному может быть установлена категория «ребенок инвалид» (для Застрахованного до 18 лет), либо одна из групп (I,II,III) инвалидности (для Застрахованного старше 18 лет). При этом выплачивается процент от страховой суммы по риску «Инвалидность» в соответствии с Таблицей 2.

Таблица 2. Процент страховой суммы, выплачиваемой при установлении инвалидности

Категория/группа инвалидности	Размер выплаты в процентах страховой суммы
Ребенок-инвалид	100%
I группа	100%
II группа	80%
III группа	30%

На основании статистической информации Федеральной службы государственной статистики о числе лиц, впервые признанных инвалидами, получена Таблица 3.

Таблица 3. Распределение числа лиц впервые признанных инвалидами по категориям/группам

	Доля в процентах от
Категория/группа	общего числа лиц,
инвалидности	впервые признанных
	инвалидами
Ребенок-инвалид	14,0%
I группа	13,7%
II группа	35,2%
III группа	37,1%

По таблицам 2 и 3, рассчитано среднее значение убыточности страховой суммы $\frac{s_b}{s} = 0,67$. Итоговый расчет нетто-тарифа по риску «Инвалидность» приведен в таблице 4.

Таблица 4. Нетто-тариф по риску «Инвалидность»

Годовая вероятность наступления страхового случая (q)	0,0004
Убыточность страховой суммы (S_b/S)	0,67
Планируемое число договоров (L)	250
Основная часть нетто-ставки (T_o)	0,0268%
Рисковая надбавка (T_p)	0,1322%
Нетто-ставка (T_n)	0,1600%

Брутто-ставка T_b рассчитывается по формуле:

$$T_b = \frac{T_n}{1 - f}$$

При заключении договора страхования на срок n лет, брутто-тариф за весь срок страхования составляет $T_b \cdot n$.

При уплате страховой премии m раз в год равными частями в течение k лет, брутто-тариф на один платеж составляет $\frac{T_b \cdot n}{k \cdot m}$.

Коэффициенты риска

В случае существенных отклонений в состоянии здоровья Застрахованного лица Страховщик вправе увеличить размер страховой премии по страховым случаям «Смерть» и «Инвалидность» умножением рассчитанного размера страховой премии на коэффициенты риска (от 0.50 до 1.50), устанавливаемые Страховщиком в зависимости от индивидуального риска, связанного:

- с отклонениями в состоянии здоровья Застрахованного лица, определяемого по наличию (отсутствию) заболеваний системы кровообращения, органов дыхания и иных заболеваний, существенно увеличивающих риск смерти и установленных по данным Заявления о накопительном страховании детей с участием в прибыли, Анкеты о состоянии здоровья или Врачебного освидетельствования;
 - с нагрузкой на нетто-ставку;

- с регионом постоянного проживания.

Приложение 1. Таблица смертности

Возраст	Мужчины	Женщины
X	l_x	l_x
0	100 000	100 000
1	97 900	98 475
2	97 708	98 328
3	97 617	98 257
4	97 551	98 205
5	97 494	98 159
6	97 438	98 117
7	97 379	98 079
8	97 317	98 044
9	97 255	98 012
10	97 195	97 982
11	97 139	97 954
12	97 086	97 927
13	97 034	97 899
14	96 978	97 869
15	96 911	97 835
16	96 828	97 796
17	96 724	97 751
18	96 598	97 701
19	96 450	97 647
20	96 283	97 590
21	96 101	97 532
22	95 910	97 474
23	95 714	97 418
24	95 517	97 364
25	95 321	97 311
26	95 125	97 259
27	94 927	97 205
28	94 724	97 148
29	94 511	97 085
30	94 285	97 016
31	94 042	96 941
32	93 781	96 860
33	93 500	96 774

Возраст	Мужчины	Женщины
X	l_x	l_x
34	93 200	96 684
35	92 881	96 589
36	92 545	96 487
37	92 192	96 375
38	91 821	96 249
39	91 429	96 107
40	91 011	95 947
41	90 561	95 771
42	90 073	95 582
43	89 541	95 384
44	88 959	95 179
45	88 324	94 966
46	87 635	94 739
47	86 892	94 487
48	86 094	94 199
49	85 242	93 865
50	84 333	93 482
51	83 363	93 057
52	82 326	92 604
53	81 214	92 138
54	80 019	91 667
55	78 733	91 185
56	77 348	90 666
57	75 858	90 067
58	74 260	89 335
59	72 552	88 428
60	70 736	87 329
61	68 815	86 057
62	66 796	84 664
63	64 682	83 189
64	62 478	81 651
65	60 186	80 053
66	57 809	78 388
67	55 350	76 648

D	M	210
Возраст	Мужчины	Женщины
X	l_x	l_x
68	52 815	74 825
69	50 210	72 909
70	47 542	70 891
71	44 821	68 762
72	42 058	66 513
73	39 266	64 134
74	36 458	61 618
75	33 650	58 957
76	30 860	56 148
77	28 106	53 187
78	25 405	50 075
79	22 778	46 817
80	20 243	43 423
81	17 819	39 910
82	15 524	36 303
83	13 375	32 632
84	11 385	28 938
85	9 565	25 269
86	7 923	21 680
87	6 463	18 230
88	5 185	14 981
89	4 086	11 993
90	3 158	9 318
91	2 390	6 996
92	1 768	5 052
93	1 276	3 490
94	897	2 291
95	613	1 419
96	406	823
97	260	443
98	160	219
99	95	98
100	54	39

Приложение 2. Таблица инвалидизации

Возраст	Мужчины	Женщины
X	l_x	l_x
0	100 000	100 000
1	99 950	99 950
2	99 900	99 900
3	99 842	99 842
4	99 784	99 784
5	99 726	99 726
6	99 665	99 665
7	99 600	99 600
8	99 530	99 530
9	99 456	99 456
10	99 378	99 378
11	99 295	99 295
12	99 209	99 209
13	99 119	99 119
14	99 025	99 025
15	98 946	98 946
16	98 826	98 826
17	98 721	98 721
18	98 612	98 612
19	98 499	98 499
20	98 383	98 383
21	98 264	98 264
22	98 143	98 143
23	98 013	98 013
24	97 877	97 877
25	97 736	97 736
26	97 589	97 589
27	97 439	97 439
28	97 286	97 286
29	97 130	97 130
30	96 969	96 969
31	96 806	96 806
32	96 639	96 639
33	96 467	96 467

Возраст	Мужчины	Женщины
X	l_x	l_x
34	96 292	96 292
35	96 112	96 112
36	95 926	95 926
37	95 733	95 733
38	95 531	95 531
39	95 320	95 320
40	95 098	95 098
41	94 864	94 864
42	94 618	94 618
43	94 356	94 356
44	94 090	94 090
45	93 798	93 798
46	93 500	93 500
47	93 169	93 169
48	92 811	92 811
49	92 423	92 423
50	91 995	91 995
51	91 516	91 516
52	90 974	90 974
53	90 354	90 354
54	89 642	89 642
55	88 820	88 820
56	87 871	87 871
57	86 766	86 766
58	85 552	85 552
59	84 224	84 224
60	82 778	82 778
61	81 222	81 222
62	79 562	79 562
63	77 806	77 806
64	75 961	75 961
65	74 035	74 035
66	72 158	72 158
67	70 260	70 260

Возраст	Мужчины	Женщины
X	l_x	l_x
68	68 345	68 345
69	66 417	66 417
70	64 481	64 481
71	62 540	62 540
72	60 598	60 598
73	58 658	58 658
74	56 725	56 725
75	54 801	54 801
76	52 891	52 891
77	50 997	50 997
78	49 123	49 123
79	47 271	47 271
80	45 444	45 444
81	43 644	43 644
82	41 874	41 874
83	40 136	40 136
84	38 432	38 432
85	36 764	36 764
86	35 134	35 134
87	33 542	33 542
88	31 992	31 992
89	30 482	30 482
90	29 014	29 014
91	27 589	27 589
92	26 208	26 208
93	24 871	24 871
94	23 579	23 579
95	22 331	22 331
96	21 128	21 128
97	19 970	19 970
98	18 857	18 857
99	17 786	17 786
100	16 650	16 650

Приложение 3. Гарантируемые годовые нормы доходности

Срок	Валюта		
страхования (лет)	RUB	USD	EUR
1	4,50%	2,00%	2,00%
2	4,50%	2,00%	2,00%
3	4,50%	2,00%	2,00%
4	4,00%	2,00%	2,00%
5	4,00%	2,00%	2,00%
6	3,50%	2,00%	2,00%
7	3,50%	2,00%	2,00%
8	3,50%	2,00%	2,00%
9	3,50%	2,00%	2,00%
10	3,50%	2,00%	2,00%
11	3,00%	1,50%	1,50%
12	3,00%	1,50%	1,50%
13	3,00%	1,50%	1,50%
14	3,00%	1,50%	1,50%
15	3,00%	1,50%	1,50%
16	3,00%	1,50%	1,50%
17	3,00%	1,50%	1,50%
18	3,00%	1,50%	1,50%
19	3,00%	1,50%	1,50%
20	3,00%	1,50%	1,50%
21	3,00%	1,50%	1,50%